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Abstract
We compare the experimental data of the first measurement of a temperature
dependence of the Casimir–Polder force by Obrecht et al (2007 Phys. Rev.
Lett. 98 063201) with the theory taking into account small, but physically
real, dc conductivity of the dielectric substrate. The theory is found to be
inconsistent with the data. The conclusion is drawn that the conductivity
of dielectric materials should not be included in the model of the dielectric
response in the Lifshitz theory. This conclusion obtained from the long
separation measurement is consistent with related but different results obtained
for semiconductors and metals at short separations.

PACS numbers: 34.35.+a, 42.50.Nn, 77.22.Ch

1. Introduction

The Casimir–Polder force [1] acts between rarefied atoms and a wall. It originates from
zero-point and thermal fluctuations of the electromagnetic field. At separations x less than
a few nanometers (but larger than a few angstroms) the interaction between an atom and
a wall is of nonrelativistic character and takes the form of the nonretarded van der Waals
force. The interaction potential in this region, V3(x) = −C3/x

3, was found by Lennard-Jones
[2]. Casimir and Polder included retardation effects which result in the interaction potential
V4(x) = −C4/x

4 at separations of about 1 µm. In the intermediate region the quantitative
description of the van der Waals–Casimir–Polder force invites for the inclusion of material
properties. Thermal effects come into play at separations larger than about 2 µm. Both
material properties and thermal effects were included in the Lifshitz theory of the van der
Waals forces between dielectrics [3]. This theory describes the case of two parallel plates
(separated by a vacuum gap of width d) and that of an atom at a separation d from a wall.
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For a long time the study of atom–wall interaction was considered as merely an
academic exercise because the interaction is relatively small. The situation changed
radically during the last decade when the atom–wall interaction in different physical,
chemical and biological processes received increasing attention [4]. As examples, this
interaction plays a major role in experimental studies of quantum reflection, Bose–
Einstein condensation and diffraction of atoms on different surfaces [5–11]. It attracts
additional interest in nanotechnological applications, such as carbon nanotubes [12–14] and
mesoscopic-scale atomic devices. All these applications require accurate characterization of
the atom–wall interaction including the dependence of the force on atomic and material
properties and on the temperature (see [15–17] for the most precise computations on
the basis of the Lifshitz theory and for a history of the problem). In parallel with
the Casimir–Polder interaction, the Casimir force between two macrobodies [18] was
investigated both experimentally and theoretically (see reviews [19, 20] and recent experiments
[21–24]). Similar to the Casimir–Polder force, the Casimir force finds multidisciplinary
applications ranging from constraints on hypothetical interactions predicted by multi-
dimensional physics [21, 22] to nanotechnological applications [25]. Comparison of the
Casimir force measurements with theory also needs to be done with the inclusion of real
material properties and nonzero temperature [20]. The temperature dependence of the Casimir
force between two metal plates is the subject of discussion (see, e.g., [26–28]). Some of
the measurements of the Casimir force between metallic macrobodies performed up to date
[21, 22] were precise enough to exclude theoretical models which take into account the
relaxation processes in the real current of conduction electrons. Until now, however,
experiments were not of sufficient precision to measure the thermal effect in situ.

The first measurement of the thermal Casimir–Polder force was performed in the excellent
experiment [29] both in the thermal equilibrium and nonequilibrium cases. In that experiment
the dipole oscillations with the frequency ω0 were excited in a 87Rb Bose–Einstein condensate
separated by a distance of a few micrometers from a fused-silica substrate (wall). The
Casimir–Polder force FCP between a rubidium atom and a substrate changes the magnitude
of the oscillation frequency making it equal to some ωx . The fractional frequency difference
γx = |ω0 − ωx |/ω0 was measured and compared with theory [30, 31] at an environment
temperature TE = 310 K and at different substrate temperatures TS = 310 K (thermal
equilibrium) and 479 K, 605 K (out of thermal equilibrium). In all cases excellent agreement
between data and theory was demonstrated.

In this paper, we obtain important new information from the measurement data of
experiment [29]. Using theory developed in [30, 31], we recalculate the fractional frequency
difference γx by taking into account a nonzero dc conductivity of fused silica at experimental
temperatures. We emphasize that introduction of such a small but real conductivity will lead to
a drastically different result in the framework of the Lifshitz theory. The obtained theoretical
results both in thermal equilibrium and out of thermal equilibrium are in disagreement with the
measurement data. At the same time, when we neglect the static conductivity of fused silica
in our calculations, we return back to the computational results of [29] which are in excellent
agreement with the data. We have checked that the differences between the theoretical results
computed at different TS with the static conductivity of fused silica included and neglected
are completely determined by the equilibrium contribution FCP to the total atom–wall force
F(x, TS, TE) (see equation (3) below). The additional contributions Fn(x, TS) and Fn(x, TE)

arising in the atom–wall force out of thermal equilibrium are the same, regardless of whether the
static conductivity of the substrate material is included. The obtained experimental evidence
that the static conductivity of a wall should be neglected in theoretical calculations using the
Lifshitz theory is of much interest for the numerous applications of the Casimir–Polder and
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Casimir forces. It amplifies the measurement results of [23, 24], demonstrating that to achieve
an agreement between experiment and theory in the Casimir interaction of a gold sphere and
a semiconductor plate with doping concentration below critical, the static conductivity of the
semiconductor should be neglected. Another type of experiments [21, 22, 32, 33] deals with
the Casimir interaction between two gold macrobodies. These experiments also demonstrate
that theory taking into account the relaxation processes in real current of conduction electrons
is inconsistent with measurement data. To achieve an agreement between data and theory, one
should neglect the real current of conduction electrons.

As opposed to [21–24, 32, 33], the above evidence is based on the measurement data
related to a dielectric sample. It is the first one for any kind of material which follows
from the data at separation distances of a truly thermal regime above 6 µm (experiments in
[21–24, 32, 33] lead to conclusive results at separations less than 1 µm).

2. Calculational procedure and theoretical results

In the experiment [29] the unperturbed trap frequency was measured to be ω0 = 2π ×229 Hz.
The separation distance between the trap center of mass and the surface of the substrate d
varies from 6.5 to 11 µm. Now we briefly present the calculation procedure of the perturbed
oscillation frequency ωx , as developed in [30, 31] (see also [34, 35] for some details).

In accordance with the Lifshitz theory, the Casimir–Polder force between an atom at a
separation x above a substrate at a temperature T in thermal equilibrium is given by

FCP (x, T ) = −2kBT

[
α0r0

∫ ∞

0
k3dk e−2kx +

∞∑
l=1

αl

∫ ∞

0
k dk e−2qlxh(ξl, k)

]
,

(1)

h(ξl, k) =
(

2q2
l − ξ 2

l

c2

)
rTM(iξl, k) − ξ 2

l

c2
rTE(iξl, k).

Here, the dielectric permittivity of the substrate εl = ε(iξl) and the atomic dynamic
polarizability αl = α(iξl) are calculated at the imaginary Matsubara frequencies, ξl =
2πkBT l/h̄, and the following notations are introduced:

rTM = εlql − kl

εlql + kl

, rTE = ql − kl

ql + kl

, r0 = rTM(0, k),

(2)

ql =
√

k2 +
ξ 2
l

c2
, kl =

√
k2 + εl

ξ 2
l

c2
.

When the temperature of the substrate (TS) and of the surrounding environment (TE) are
different, the force acting between an atom and a substrate was obtained in [31]

F(x, TS, TE) = FCP (x, TE) + Fn(x, TS) − Fn(x, TE), (3)

where the nonequilibrium contribution is defined as

Fn(x, T ) = −K

∫ ∞

0
dω

∫ ∞

0
dt f (ω, t) e− 2ωtx

c ,

f (ω, t) = ω4t2

e
h̄ω

kB T − 1
[|p(ω, t)| + Re ε(ω) − 1 − t2]1/2

(4)

×
[

1

|√p(ω, t) + it |2 +
(2t2 + 1)(t2 + 1 + |p(ω, t)|

|√p(ω, t) + iε(ω)t |2
]

,

K = 2
√

2h̄α0

πc4
, p(ω, t) ≡ ε(ω) − 1 − t2.
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The frequency shift of the condensate oscillations under the influence of the force F is
obtained as [31]

ω2
0 − ω2

x = − ω0

πam

∫ 2π/ω0

0
dτ cos(ω0τ)

∫ Rx

−Rx

dx̃ nx
0(x̃)F [d + x̃ + a cos(ω0τ), TS, TE]. (5)

In the experiment [29] a = 2.50 µm is the amplitude of the oscillations, Rx = 2.69 µm is the
Thomas-Fermi radius in the x-direction, m = 1.443 × 10−25 kg is the mass of the rubidium
atom and

nx
0(x̃) = 15

16Rx

(
1 − x̃2

R2
x

)2

. (6)

As a supplementary element to [30, 31, 34, 35], we perform analytically the averaging
procedures. Substituting (3) and (6) into (5) and integrating with respect to x̃ and τ , one
arrives at

γx = 1

maω2
0

|�e(d, TE) + �n(d, TS) − �n(d, TE)|, (7)

where

�e(d, T ) = −2kBT

[
α0r0

∫ ∞

0
k3dk e−2kdI1(2ka)g(2kRx)

+
∞∑
l=1

αl

∫ ∞

0
k dk h(ξl, k) e−2qldI1(2qla)g(2qlRx)

]
, (8)

g(z) ≡ 15

z5
[(3 + z2) sinh z − 3z cosh z],

and I1(z) is the Bessel function. The function �n(d, T ) is given by (4) for Fn(x, T ) where x
should be replaced with d and the function f (ω, t) with

f̃ (ω, t) = f (ω, t)I1

(2aωt

c

)
g
(2Rxωt

c

)
. (9)

Now we are in a position to compute γx under different assumptions of the conductivity
of fused silica. Following [31], the static dynamic polarizability of Rb atoms αl ≈ α0 =
4.73 × 10−23 cm−3 is used in computations. This allows one to obtain highly accurate results
at separations under consideration [15]. For fused silica ε(iξl) as a function of ξl is taken from
[16].

The computational results for γx in thermal equilibrium are shown in figure 1 by the solid
line. In the same figure, the experimental data obtained in [29] at separations below 10 µm are
shown as crosses. The absolute errors in the measurement of separations and γx are presented
in true scales at each individual data point. The solid line in figure 1 practically coincides with
the solid line in figure 4(a) of [29] computed using ε(iξl) = ε0 = 3.81 (only minor deviations
are observed at d < 8 µm). Note that in the theory of [30, 31, 34] the frequency-dependent
ε of fused silica was used with a finite static value ε0. It was shown that the account of the
frequency dependence leads to only a minor effect and only at small distances. We confirm
this conclusion. The theoretical computations are in excellent agreement with the data, as was
stated in [29]. Our computation results for γx in nonequilibrium situations are presented by
the solid lines in figure 2(a) for TS = 479 K and in figure 2(b) for TS = 605 K. These lines
also practically coincide with respective lines in figure 4(a) of [29]. According to [31, 34]
the frequency dependence of ε(ω) does not affect the nonequilibrium contributions �n in the
studied ranges of d and T. It is seen that at nonequilibrium the data are also in very good
agreement with theoretical computations.
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Figure 1. Fractional change in the trap frequency versus separation in thermal equilibrium with
TS = TE = 310 K computed by neglecting (solid line) and including (dashed line) the conductivity
of the dielectric substrate. The experimental data are shown as crosses.

(a) (b)

Figure 2. Fractional change in the trap frequency versus separation out of thermal equilibrium
(a) with TS = 479 K and TE = 310 K and (b) TS = 605 K, TE = 310 K. Computations are done
by neglecting (solid line) and including (dashed line) the conductivity of the dielectric substrate.
The experimental data are shown as crosses.

3. Account of dc conductivity of the dielectric substrate

At nonzero temperature any dielectric possesses nonzero dc conductivity. It is commonly
taken into account by replacing the dielectric permittivity ε(ω) with [10, 36–39]

ε̃(ω) = ε(ω) + i
4πσ0(T )

ω
. (10)

The inclusion of conductivity dramatically affects the calculation results using (7) and (8).
In the above computations r0 = (ε0 − 1)/(ε0 + 1) was used following from (2) for ε(0) = ε0.
The same equation (2) with the use of dielectric permittivity (10) results in r0 = 1. This
alone changes the contribution from �e(d, T ) defined in (8) and leads to the corresponding
change in the magnitudes of γx computed using (7). We emphasize that this change does not
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depend on the value of σ0, but only on the fact that it is nonzero. At TS = TE = 310 K
the conductivity of the fused silica sample varies within a wide region from 10−9 s−1 to
102 s−1 depending on the concentration of impurities [40, 41]. This results in negligibly small
additions to εl = ε(iξl) at all ξl �= 0.

The computational results for γx using (7), (8) and (10) in thermal equilibrium are shown
in figure 1 as the dashed line. As is seen in the figure, the first two experimental points are in
clear disagreement with theory taking into account the conductivity of fused silica.

In the nonequilibrium situation the disagreement between the experimental data and
theory taking the static conductivity of silica into account widens. Direct computations show
that the addition of conductivity does not influence the nonequilibrium contributions into γx .
The magnitudes of �n(d, T ) computed with different values of σ0 from 0 to 103 s−1 coincide
up to six significant figures. Thus, the conductivity influences only through the equilibrium
term �e(d, T ). The respective results for γx are presented in figure 2 by the dashed lines.
As is seen in figure 2(a) (TS = 479 K), the three experimental points exclude the dashed line
and the other two only touch it. The dashed line in figure 2(b) (TS = 605 K) demonstrates
that all data exclude the theoretical prediction incorporating the static conductivity of fused
silica. Thus, the confidence at which the theoretical approach based on (10) is excluded by
data increases with the increase of substrate temperature TS . This is in accordance with the
conclusion of [29] that the Casimir–Polder force for a 605 K substrate is nearly three times
larger than for a 310 K substrate. The comparison of the complete set of data, as given by
crosses in figures 1 and 2(a), (b), with the dashed lines shows that the inclusion of the static
conductivity of fused silica in computations of the Casimir–Polder force is inconsistent with
the experimental data of [29].

4. Conclusions and discussion

To conclude, we have shown that the inclusion of a small, but physically real, static conductivity
for the dielectric substrate in the Lifshitz theory leads to a large increase in the magnitude of
the Casimir–Polder force. However, as is shown above, the theoretical predictions including
the static conductivity of the dielectric are in deep disagreement with the experimental data of
[29] for the thermal Casimir–Polder force between an atom and a silica surface. Neglecting the
static conductivity of silica in the Lifshitz theory leads to an excellent agreement with the data.
These results should be considered together with the recent proof [42, 43] that the Lifshitz
theory taking into account dc conductivity of a dielectric substrate is thermodynamically
inconsistent. Thus, the static conductivity of dielectrics should not be included in the
model of the dielectric response. This conclusion is consistent with a related but different
experiment of the Casimir-force measurement between a semiconductor plate and a gold sphere
[23, 24], where it was found that the static conductivity of the semiconductor plate with doping
concentration below the critical should be neglected. The obtained results clarify the use of the
Lifshitz theory and are of wide applicability in all multidisciplinary applications of dispersion
forces. Note that paper [44] attempts a physical explanation of the low-frequency limit of
the permittivity of dielectrics in the theory of the Casimir–Polder force including spatial
dispersion and screening effects. The suggested generalization of the Lifshitz theory is,
however, thermodynamically inconsistent [45] for all materials (including fused silica) whose
concentration of charge carriers does not depend on T and σ0(T ) goes to zero when T vanishes
due to the vanishing mobility of the charge carriers. It is also in contradiction with experiment
[45] along with another approach [46] which leads to the same results in the limiting case of
low concentration of charge carriers. Thus, the role of dc conductivity of dielectrics in the
theory of dispersion forces calls for further investigation.
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